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Phase equilibria in polydisperse nonadditive hard-sphere systems

Patrice Paricaud™
Laboratoire de Chimie et Procédés, ENSTA, ParisTech, 32 Bd Victor, 75739, Paris cedex 15, France
(Received 28 March 2008; published 14 August 2008)

Colloidal particles naturally exhibit a size polydispersity that can greatly influence their phase behavior in
solution. Nonadditive hard-sphere (NAHS) mixtures are simple and well-suited model systems to represent
phase transitions in colloid systems. Here, we propose an analytical equation of state (EOS) for NAHS fluid
mixtures, which can be straightforwardly applied to polydisperse systems. For positive values of the nonaddi-
tivity parameter A the model gives accurate predictions of the simulated fluid-fluid coexistence curves and
compressibility factors. NPT Monte Carlo simulations of the mixing properties of the NAHS symmetric binary
mixture with A>0 are reported. It is shown that the enthalpy of mixing is largely positive and overcomes the
positive entropy of mixing when the pressure is increased, leading to a fluid-fluid phase transition with a lower
critical solution pressure. Phase equilibria in polydisperse systems are predicted with the model by using the
density moment formalism [P. Sollich ez al., Adv. Chem. Phys. 116, 265 (2001)]. We present predictions of the
cloud and shadow curves for polydisperse NAHS systems composed of monodisperse spheres and polydisperse
colloid particles. A fixed nonadditivity parameter A >0 is assumed between the monodisperse and polydisperse
spheres, and a Schulz distribution is used to represent the size polydispersity. Polydispersity is found to
increase the extent of the immiscibility region. The predicted cloud and shadow curves depend dramatically on
the upper cutoff diameter o, of the Schulz distribution, and three-phase equilibria can occur for large values of

o,.
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I. INTRODUCTION

Knowledge of the phase behavior of colloid dispersions is
of crucial importance for many applications related to the
food, paint, and pharmaceutical industries. Hard-sphere sys-
tems are commonly used to represent mixtures of colloidal
particles. Additive hard-sphere (AHS) systems are hard-
sphere mixtures for which the cross collision diameters o;
between spheres i and j is equal to the arithmetic mean &;;
=(0;+0;;)/2, while nonadditive hard-sphere system are
mixtures where o;; is different from &;. For nonadditive
hard-sphere (NAHS) binary mixtures it is common to define
a nonadditivity parameter A as A=(o,—8;,)/ 8;,. The case
A=0 corresponds to an additive binary mixture. Symmetric
HS mixtures are binary mixtures of hard spheres of equal
sizes (0};=07,), while asymmetric mixtures correspond to
the cases where o, differs from o,,. The current work deals
with both symmetric and asymmetric NAHS systems, mainly
with positive nonadditivities A >0. The reader is directed to
a paper by Santos et al. [1] for a review of the theoretical and
simulation studies of NAHS mixtures. Fluid-fluid demixing
in nonadditive systems with A >0 was clearly observed from
molecular simulation [2—4]. This fluid-fluid phase separation
can be explained by the fact that the packing of the hard
spheres is more difficult in the nonadditive mixture than it is
when the unlike species demix. Some prototype NAHS bi-
nary mixtures have been studied with great attention, such as
the Widom-Rowlinson model system [5]. This system is a
symmetric mixture where both hard-sphere components have
an infinitely small diameter compared to the positive cross
diameter (0},=0,=0, 0,>0). It is one of the simplest
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model systems that exhibit a fluid-fluid phase transition. The
Asakura-Oosawa (AO) model [6] (oy;>0, 05,=0, ,,>0)
is another well-known model mixture that has often been
used to represent the phase transitions in colloid particles and
nonabsorbing polymer mixtures. This model system assumes
that the polymer chains (component 2) are ideal chains that
can completely overlap (0,=0), and takes both the colloid-
colloid and polymer-colloid repulsive interactions into ac-
count via the diameters o, and o,, respectively. Colloid
systems are not the only applications of the NAHS model
systems. NAHS mixtures may also be employed as the ref-
erence systems in equations of state based on perturbation
theory and attractive intermolecular potentials. The intuitive
combining rule o,=(0,+0,,)/2 corresponding to the addi-
tive mixture (A=0) is often used to predict the thermody-
namic properties of real mixtures, but this is not an exact
rule: A can significantly deviate from O for real systems such
as rare gas mixtures. The so-called gas-gas phase transition
at high pressure observed in mixtures of rare gases [7] is an
example of fluid-fluid phase separation due to the positive
nonadditivity of the cross effective diameters. For engineer-
ing applications the nonadditivity parameter A can be a very
useful adjustable parameter to represent phase equilibria data
(8]

Real colloid systems are polydisperse. As a polydisperse
system contains many different species, a large number of
nonlinear equations (corresponding to the equality of the
chemical potentials of these species in both phases) must be
simultaneously solved for the determination of the phase
equilibria. Most equations of state for multicomponent sys-
tems can be expressed in terms of a finite number of mo-
ments of the distribution function characterizing the size
polydispersity, and the phase equilibria problem can be re-
duced to a few equations. Excellent reviews of the method-
ologies employed for the calculation of phase equilibria in
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polydisperse systems can be found in the literature [9-11]. In
the case of NAHS systems, accurate equations of state (EOS)
were developed to predict the properties of binary mixtures
[1,12-20], but none of these equations of state has been ap-
plied to a polydisperse NAHS system, to our knowledge. The
only studies of the phase equilibria in polydisperse NAHS
systems we are aware of are the work of Dickson [21] who
used the van der Waals one-fluid mixing rule, and the studies
based on the AO model system [22,23]. The aim of the cur-
rent work is to propose a simple and accurate analytical
equation of state for fluid NAHS systems, which considers
all components explicitly (i.e., without using any effective
potential) and which can be easily extended to polydisperse
NAHS mixtures.

This paper is organized as follows: We present an equa-
tion of state for NAHS mixtures and evaluate its accuracy by
comparing the theoretical predictions to simulation results.
We then examine the mixing properties of NAHS mixtures
A>0, using both NPT Monte Carlo simulations and our
EOS, to explain the mechanism of fluid-fluid phase separa-
tion in these mixtures. Last, we report predictions of the
cloud and shadow curves for a number of polydisperse
NAHS systems, and discuss the size fractionation effects and
divergence issues when very large diameters are considered.

II. THEORY
A. Equation of state for NAHS mixtures

We consider a multicomponent mixture of N hard spheres
in a volume V. The interaction between sphere i of diameter
o;; and sphere j of diameter o;, separated by a distance ry;, is
described by a hard spherical potential u;; defined as

+®, s oy,
ujj= 0 (1)

, rij > 0y
The collision diameter g;; can be nonadditive, i.e., we allow
that o;# (0;+0;;)/2. The equation of state is based on a
ﬁrst—order perturbat10n theory that uses the additive hard-
sphere mixture as the reference system. The reader is di-
rected to a paper by Adams and McDonald [12] for a com-
parison between different NAHS models based on
perturbation theory. Our equation of state is based on a modi-
fication of the MIX1 theory [24,25]. This modification was
made to ensure an exact prediction of the second virial co-
efficients [26]. The model is described as follows: the free
energy density f of a multicomponent NAHS mixture, de-

fined as f=A/V where A is the Helmholtz free energy, is
given by

f fIDEAL AHS fPERT

= WL ; (2)
KT~ KT kT AT

where k is the Boltzmann constant, 7 is the temperature,
fPEAL 5 the ideal contribution of the free energy density,
fAHS is the residual free energy density of the corresponding
additive hard-sphere mixture at the same temperature, com-
position, and density, and fPERT is the perturbation contribu-
tion given by [26]
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fPERT 2ar
kT = _2 plpj(g - (53 AHS’ (3)

where p; is the number density of sphere i, gAHS the contact

value of the radial distribution function (RDF 3 of the ij pair
in the additive hard-sphere mixture, and &;=(0;+0;;)/2 the
additive diameter of the ij pair interactlon The dlfference
between our theory and the MIX1 equation of state [24, 25] is
the term (o N 5%) that replaces the MIX1 term 352 (

;). It is clear from Egs. (2) and (3) that the model cor—
rectly predicts the second virial coefficients B;; 27707 /3. In
Sec. IV A, we show that the term (o*?] 5”) gives rise to
better predictions of the simulation data than the MIX1 term.
Equation (3) can be expressed in terms of the nonadditivity
parameters A;;=0;;/6;—1 as

fPERT 2t
o= ?E pip[(1+A,)° = 1155 (4)

We use the Boublik-Mansoori-Carnahan-Starling-Leland
(BMCSL) equation of state [27,28] to calculate the additive
contribution fAHS. The BMCSL equation is simple and accu-
rate over a wide range of densities of composition and for
large diameter ratios [29]. The contribution fAHS is given by
[27,28]

fAHS 2
a6

where

306 e
-4 GU-02 )
(5)

fo)l (1-4)+

7Tn
=<2 P (6)

We define the packing fraction 7 as n={;. The RDF contact
values gSHS for the additive hard-sphere mixture are consis-
tent with the BMCSL equation of state and are given by
[27,28]

30 O-JJ & (O'iio'jj)z &
;-7 28, (1-4)°
(7)
For the Widom-Rowlinson mixture [5] the free energy den-
sity given by the model is equivalent to f=fPEAL

+kT% 7Tp]p20':;2, which corresponds to the mean-field solution
proposed by Widom and Rowlinson [5].

gAHS _ 1
Y 1- 53

B. Application to polydisperse NAHS mixtures

We now consider a prototype polydisperse system com-
posed of monodisperse spheres 1 of diameter o; and poly-
disperse spheres i>1 of diameter ;. We suppose that the
nonadditive parameters A;; between sphere i>1 and sphere
j>1 are equal to zero, 1e =9, for all i, j>1 (the poly-
disperse spheres are additive between themselves), and that
the nonadditivity parameter between a sphere of type 1 and a
sphere of type i>1 has always the same value A, i.e., oy;
=0;,=(1+A)48; for all i>1. The composition of the polydis-
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perse spheres i>1 in a given phase is represented by a con-
tinuous density distribution p, defined over the interval
[0,0.], where o is the upper cutoff diameter, i.e., the diam-
eter of the largest sphere in the system; p,(o) is continuous
function of o giving the number density of a spheres of
diameter o in the phase. One can define the /th density mo-
ments {p,); of the diameter distribution p, as

<p(r>l=f CdO'OJP(r(U)- (8)
0

The free energy density of the phase is obtained from Eq.
(1); the ideal contribution fI°FAL is given by

DEAL

kKT

¢

d(TpO.(O')[ln po'(o-) -

=p1(lnpl—1)+f 11, 9)

0

where p; is the number density of component 1 (monodis-
perse spheres of diameter ;). The de Broglie volumes were
removed from Eq. (9) as they do not affect the phase equi-
libria. The density p=N/V of the phase is given by p=p,
+{p,)o- The additive hard-sphere contribution fAHS is given
by Eq. (5), where the ; are expressed as

§z=g(P10111+<Po>1)- (10)

The perturbation contribution fPERT is obtained from Eq. (4)
and is given by

ERT T Te
fP =4—p1f do‘pa(U)[(1+A)3—l](
0

3
0'11+0'> AHS

kT~ 3 2 lo >

(11)

where gAHS is the contact value of the RDF between sphere 1
and a sphere of diameter o in the additive hard-sphere mix-
ture. The contribution f*ERT can be expressed in terms of the
density moments {p,); of the distribution p, as

fPERT

gpl[(l +A)P3-1]

kT
><(aﬁxp(»o +30114Po)1 +37114P0)2 + (P
2(1-83)
+5 (011<Po>1 + 20’%1<Pg>2 + 011<Po>3)( Zg )2
+ (0 {po)a + 0'%1<Pg>3)§—§> . (12)
(1-¢)°
Since the residual free energy density fRES=f—fIPEAL only

depends on a finite number of density moments, it belongs to
the category of “truncatable” free energies [11,30]. As a re-
sult, the number of equations that must be solved for a cloud
point calculation does not depend on the number of molecu-
lar species. The chemical potential w; of sphere 1 is obtained
from the thermodynamic relation w;=df/dp;. The chemical
potential u(o) of a sphere of diameter o is the functional
derivative of f with respect to the density distribution p,(o),
and is given by
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3 ES

@+3 L

of
5p0(0-) - =0 07<pcr>l

The pressure of the polydisperse system is obtained from the
thermodynamic relation P=Xp;u;—f as [30]

wlo) = . (13)

ES
=ka—fRES+plaap +E<p0'>l(9{R - (14)

The conditions of the phase equilibria between phases a and
B are the equality of the pressure, the equality of the chemi-
cal potential of component 1, and the equality of the chemi-
cal potential w(o) of the spheres of diameter o in both
phases. It can be shown that the latter condition [u® (o)

=u'P(0)] is equivalent to [30]
3 GFRES(@  RES(B)
(0') P (U)explz ( 5<P(,->EB)>OJ s
(15)

Ko™

where (p,); (@) (pa)gﬁ) are the /th density moments of the
phases « and ,8. Equation (15) must be satisfied for all values
of ce[0,0,]. At the cloud point, the composition of the
cloud phase is equal to the parent composition, and the
amount of the shadow phase is infinitely small. Let us as-
sume that phase « is the cloud phase and phase (3 the shadow
phase. For a cloud point calculation it can be shown that the
necessary and sufficient conditions for the equality of w(o)
in both phases for each diameter o correspond to the defini-
tions of the first four density moments of the shadow phase 8
[Eq. (8)], i.e.,

B _ (a) . e
oo’ = daokp (a)exp|
0 =0

Ao
J ES(B)
- i o | fork=0,...,3. (16)
Pol)

The parent density distribution p(o)—p(“) can be expressed as
p0= (pg>(0) qb(o) where (pU>( ) is the zero density moment of
{’)’ and ¢© is the normalized parent distribution defined

over [0,0.], which describes the global composition of the

polydisperse spheres in the system. We use a continuous and
normalized Schulz distribution for ¢©), which is given by

0,)\—16—170'
[edoa et

One can show that lim, _..[{c0*'e*da=T(\)/b". The
parameters b and \ characterize the shape of the Schulz dis-
tribution: For o,.— +%, \ is related to the width of the dis-
tribution function via the index of polydispersity I,
—(pg>(0)<pg>(0)/((p(,)(o))2 as N=1/(I,~1), and b is related to
the number average diameter (0')(0)—(p N ), (P O as b
=N/ (0')(0 Those relations between A\, b and the moments are
nearly correct for large values of o, and weak polydispersity
indexes /,. We have determined the cloud and shadow phase
for different values of I,, and different diameter ratios g
=(0) /oy, and observed that the predicted cloud and

¢(0) = (17)

P’
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shadow curves were very sensitive to the cutoff diameter o,
(see Sec. IV B). The cloud and shadow points are determined
for a fixed parent composition, by solving a system of six
nonlinear equations [four equations corresponding to Eq.
(16), and two equations corresponding to the equality of the
pressure and the equality of w; in both phases]. The six
unknowns are the four density moments (pg),(f), k=0,...,3
of the shadow phase, and the densities of both phases p'®
and pP.

III. SIMULATION DETAILS

Standard NPT Monte Carlo (MC) simulations of fluid
hard-sphere binary mixtures were performed with a total
number of spheres N=500, at different reduced pressures
P*=Pq;,/kT and compositions. We checked that the finite
size effects were negligible by performing Monte Carlo
simulations of about 900 spheres: The differences between
the average properties obtained with 500 and 900 particles
were small and within the standard deviations of the proper-
ties. Periodic boundary conditions and minimum image cri-
terion were applied to a cubic simulation box. Translation
and volume MC moves were performed with an acceptance
ratio of about 30%. As the studied mixtures were not very
dense, the reduced chemical potential w; of sphere i could be
determined with a reasonable accuracy by using the Widom
test particle insertion method [31] (TPI). In the NPT en-
semble w; is determined from the following expression [32]:

P oL
kT~ ln(Ni+1<a?1¢>)’ (18)

where V is the instantaneous volume of the simulation box,
=1 if the inserted particle does not overlap with any over
sphere in the box, and =0 if there is an overlap. The sym-
bol (---) denotes an average over the Monte Carlo simula-
tion. A large number of MC steps were required to obtain a
good estimate of the Gibbs free energy of mixing: The prop-
erties were averaged over three-million cycles, with one vol-
ume move per cycle in average. Once the chemical potentials
of all components are determined with the TPI method, the
reduced Gibbs energy G*=G/NkT is obtained from G*
=23x;u;/ kT. The reduced enthalpy of the mixture is given by
H*=H/NkT=P*(V*)/N, and the reduced entropy S*=S/Nk
is obtained using S*=H*-G™*. The reduced properties of
mixing (AG*,AH*,AS*) at fixed temperature T and pressure
P (fixed reduced pressure P*) are defined as

i,pure’

AG*=G*- >, x,G'

*
H b
i,pure

AH*=H*- >, x;H
i

i,pure’

AS*=8*— > xS (19)

*
where G,
i,pure

k sk
H and S.
i,pure

i,pure’

are the Gibbs free energy,

PHYSICAL REVIEW E 78, 021202 (2008)

TABLE 1. Thermodynamic properties (reduced density p*
=po*?] and chemical potentials u;/kT) of the symmetric nonadditive
hard-sphere binary mixture with A=0.2 (o,=07, 0,=1.207;) ob-
tained with NTP Monte Carlo simulation of 500 spheres at different
reduced pressures P*:Pa’? 1/ kT and for different mole fractions x
of component 1.

X p* my/ kT Mo/ kT
P*=04

0 0.23615 —-0.168
0.1 0.22607 -1.676 -0.259
0.2 0.21982 -1.173 —-0.341
0.3 0.21556 -0.921 —-0.426
0.4 0.21281 —-0.754 —-0.524
0.5 0.21194 —-0.628 —-0.628
P*=0.8

0 0.35501 1.183

0.1 0.33586 0.249 1.103

0.2 0.32502 0.596 1.051

0.3 0.31784 0.736 0.995

0.4 0.31410 0.829 0.947

0.5 0.31300 0.895 0.895

P¥=1.2

0 0.43543 2.199

0.1 0.41035 1.741 2.135

0.2 0.39694 1.935 2.098

0.3 0.38936 1.994 2.076

0.4 0.38506 2.024 2.058

0.5 0.38374 2.043 2.043

enthalpy, and entropy of pure component i at the same 7 and
P. The MC simulation data are reported in Table I.

IV. RESULTS AND DISCUSSION
A. Binary systems

We first compare the predictions of the equation of state
[Eq. (2)—(7)] to the simulation data of NAHS binary mix-
tures available in the literature [33-35]. We also compare the
model to three other NAHS models: The MIX1 approach
[24,25] which is based on a first-order perturbation theory
from the additive mixture, the van der Waals one-fluid (vdW-
1f) mixing rule applied to the Carnahan-Starling equation of
state [36] with the effective packing fraction 7.
=¢p2; jxixjo?j, and the equation of state developed by Santos
et al. [1]. As shown in Figs. 1 and 2, the model gives excel-
lent predictions of the compressibility factors for a broad
range of nonadditivity A and for both symmetric and asym-
metric NAHS mixtures. For A=-0.05 the model is of com-
parable accuracy as the equation of state proposed by Santos
et al. [1]. The model is more accurate than the MIX1 theory
[24,25] (Figs. 1 and 2) particularly at low densities (Fig. 3),
as it exactly predicts the cross second virial coefficient, while
the MIX1 expression depends linearly on the nonadditivity
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(a)

(b)

(c)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
02/011

FIG. 1. Compressibility factor of nonadditive hard-sphere bi-
nary mixtures as a function of the diameter ratio o5,/ 0y, for dif-
ferent values of nonadditivity A, packing fraction #= ;—Tp(x]ojl |
+x20‘32) and component 1 mole fraction x;. (a) A=-0.05, 7=0.5;
x1=0.5; (b) A=0.5, =0.075, x;=0.5; (c) A=0.5, »=0.075, x;
=0.25. The symbols denote the molecular dynamics simulation data
of Hamad [35]. The NAHS equation of state (solid lines) is com-
pared to several NAHS models: The equation of state proposed by
Santos et al. [1] (dashed-dotted line), the MIX1 theory [24,25] (dot-
ted lines), and the van der Waals one-fluid mixing rule applied with
the Carnahan-Starling model [36] (dashed lines).

parameter A. The model is clearly more accurate than the
vdW-1f model for asymmetric mixtures with A>0 [Figs.
1(a) and 2]. Although our model gives reasonably good pre-
dictions for moderate negative values of A (Fig. 2 and 3) it
does not satisfy the limit A=—1. In this limiting case, the
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0.0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 2. Compressibility factor of equimolar hard-sphere binary
mixtures with a diameter ratio 0,,/0;=3, as a function of the
packing fraction 7= fp(xlo*? 1+x20';2). The symbols denote the mo-
lecular dynamics simulation data of Hamad [35]: Circles, A=0.05;
asterisks, A=0; diamonds, A=-0.05. The solid lines are the predic-
tions of the current NAHS equation of state. The dashed lines are
the predictions of the van der Waals one-fluid mixing rule applied
with the Carnahan and Starling equation of state [36]. Here the
curves calculated with the MIX1 [24,25] and Santos et al. [1] mod-
els are not reported as they are similar to the curves calculated with
our model.

unlike species do not interact, so the residual free energy of
the system is the sum of the residual free energies of the pure
species, i.e., f=fPEALL S RS (o ), where fA15%(p,, )
is the residual free energy density of the pure hard-sphere
compound i of diameter o; at density p;. The theories
[14,15] that exactly satisfy the limit A=—1 are more accurate
than the current model for large negative values of A, par-
ticularly at high densities [Fig. 3(a)]. The model of Santos
et al. [1] does not satisfy this limit either, but remains very
accurate for negative values of A and high densities [Fig.
3(a)]. The model is reasonably accurate at low densities even
for large negative A as it correctly predicts the second virial
coefficients [Fig. 3(b)], but it becomes unreliable for A
<—0.1 at high densities [Fig. 3(a)].

The model gives good predictions of the fluid-fluid coex-
istence curves for NAHS mixtures with A >0, except in the
near-critical region [Figs. 4, 5, and 6(a)]. The difficulty to
represent the near-critical region can be explained by the fact
that the current model does not predict the correct critical
exponents. For diameter ratios close to 1 (Fig. 4), the coex-
istent curves calculated with the model are very similar to
those obtained with the model of Santos et al. [1], but are
closer to the simulated data [3] than the curves calculated
with the vdW-1f and MIX1 models. The MIX1 model tends
to underestimate the immiscibility between the two hard-
sphere components, while the vdW-1f model overestimates
it. The binodal curves of the asymmetric NAHS binary mix-
ture with 0,/ 0;=0.1 have been predicted for different non-
additivities A >0 (Fig. 5). The predictions of the MIX1 and
vdW-1f models are unsatisfactory: The vdW-1f model
largely underestimates the critical pressures for small values
of A [Fig. 5(b)], while the MIX1 model overestimates them
for large values of A [Fig. 5(a)]. For pressures higher than
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(a)

(b)

FIG. 3. Compressibility factor of nonadditive hard-sphere bi-
nary mixtures as a function of the nonadditivity parameter A. (a)
Asymmetric NAHS mixture with a diameter ratio 05,/ 0;=3 and at
packing fraction 7=0.5. The circles denote the simulation data of
Hamad [35]. (b) Symmetric NAHS mixture (o;=0,) at packing
fraction 7=/30. The symbols denote the simulation data of Jung
et al. [33,34]: The diamonds correspond to x;=0.1, and the circles
to x;=0.5. In (a) and (b), the NAHS equation of state (thick solid
lines) is compared to several NAHS models: The equation of state
proposed by Santos et al. [1] (dashed-dotted line), the MIX1 theory
[24,25] (dotted lines), and the van der Waals one-fluid mixing rule
applied with the Carnahan-Starling model [36] (dashed lines). The
thin solid lines are the predictions of Hamad’s equation of state
based on Eq. (10) of Ref. [35].

the critical points, the current model is more accurate than all
of the other tested models, while the Santos ef al. [1] and the
Dijkstra models [4] are more accurate for the prediction of
the critical composition [Figs. 5(c) and 5(d)]. The curves
calculated with the model of Santos e al. [1] are very similar
to those obtained with Dijkstra’s model [4] based on the
Barboy and Gelbart y series expansion [4,37], except for the
case A=0.2. Based on all these comparisons, one can con-
clude that the current model is more accurate for the MIX1
and vdW-1f approaches and as accurate as the model pro-
posed by Santos et al. [1], for positive nonadditivities A. One
key advantage of the current model is that one can easily
express the free energy in terms of the density moments to
solve the phase equilibria for a continuous polydisperse sys-
tem. For negative nonadditivities the model is reliable as
long as the density is low. At high density, it gives accurate
predictions only for A>-0.1 and other NAHS models [1,35]
should be used for A<-0.1.
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0.55
(a)

0.45

0.35 4

(b)

0.1 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X1

FIG. 4. Fluid-fluid phase separation shown in the density-
composition plane for NAHS asymmetric binary mixtures with
05,/ 011=1.2 and different values of o,. The reduced density is
expressed as p*=p0':;1. The open symbols denote the GEMC simu-
lation data of Rovere and Pastore [3]. (a) Diamonds, oj,=1.307,
(i.e., A=0.18182); (b) Circles, oj,=1.50; (i.e., A=0.36364).
The model (solid lines) is compared to the MIX1 theory [24,25]
(dotted lines), and to the van der Waals one-fluid mixing rule ap-
plied with the Carnahan-Starling model [36] (dashed lines). The
curves calculated with the model developed by Santos et al. [1] are
not shown here, as they are very similar to those obtained with our
model.

We now examine the properties of mixing of the symmet-
ric NAHS mixture at different state conditions, to investigate
the driving force for the phase separation. The reduced Gibbs
free energy, enthalpy, and entropy of mixing (AG*, AH*, and
AS*) of the symmetric NAHS mixture with A=0.2 have been
determined from density and chemical potential data ob-
tained by NPT Monte Carlo simulation (Table I). The mixing
properties were simulated at different reduced pressures P*
=Po’/kT outside but close to the fluid-fluid coexistence re-
gion, in order to observe the evolution of these properties
when the pressure is increased towards the demixing region.
As shown in Fig. 6, the model accurately predicts the mixing
properties far from the critical point [Figs. 6(b)-6(d)]. The
difficulty to represent the near critical region can also be
related to the incorrect predictions of the critical exponents.
One can see in Fig. 6(b) that the simulated Gibbs free energy
of mixing AG* is negative for the whole composition range,
but increases when the pressure P is increased at fixed tem-
perature. The curvature and sign of AG* predicted with the
model change when the pressure is higher than the critical
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FIG. 5. Fluid-fluid phase separation shown in the pressure-composition plane for NAHS asymmetric binary mixtures with 05,=0.107;
and different values of A. The reduced pressure is expressed as P*:Po’;’ /kT. The open symbols denote the GEMC simulation data of
Dijkstra [4]: Asterisks, A=0.5; circles, A=0.4; squares, A=0.3; diamonds, A=0.2. The model (thick solid lines) is compared to several other
nonadditive hard-sphere models: (a) MIX1 theory [24,25] (dotted lines); (b) van der Waals one-fluid mixing rule applied with the Carnahan-
Starling equation of state [36] (dashed-lines); (c) equation of state developed by Santos ef al. [1] (dashed-dotted lines); (d) Dijkstra’s model
based on the Barboy and Gelbart y series expansion [4,37] (thin solid lines).

pressure. The curvature of AG* is given by the sign of the
second derivative of AG* with respect to x;, and character-
izes the stability of the mixture. Thus, it is clear that the
system goes toward a phase transition when the pressure is
increased at fixed 7. In Fig. 6(c), one can see that the reduced
enthalpy of mixing is largely positive and dramatically in-
creases as the pressure is increased. As a result, the enthalpy
of mixing clearly favors demixing. The positive sign of AH*
comes from the large and positive volume of mixing (AH*
=P*AV*/N). The entropy of mixing AS* is positive at all of
the studied pressures [Fig. 6(d)]. At low pressures the posi-
tive entropy of mixing is mainly composed of the ideal en-
tropy of mixing AS*PEAL=_3_, ,x; In x;, and overcomes the
positive enthalpy of mixing AH*. According to the relation
AG*=AH*-AS*, the Gibbs free energy of mixing at low
pressures is negative and concave, and the mixture is stable.
As the pressure is increased, the magnitude of AS* decreases
due the excess entropy of mixing S*£=AS*— AS*IPEAL that is
negative and decreases, but the overall AS* remains positive.
At higher pressures above the critical point, fluid-fluid de-
mixing occurs as the Gibbs free energy becomes positive and
convex due to the positive enthalpy of mixing AH* that over-

comes the positive entropy of mixing. Note that a very simi-
lar behavior was predicted with the TPT1 theory for mixtures
of colloid particles and nonabsorbing polymer chains [38].

B. Polydisperse systems

Phase equilibria have been predicted for a number of pro-
totype polydisperse NAHS systems by using the current
equation of state and the methodology described in Sec. II B.
The studied polydisperse systems are mixtures of monodis-
perse spheres of diameter o; and polydisperse spheres char-
acterized by a parent average diameter (¢)® and a parent
polydispersity index I,. The case 1,=1 corresponds to a bi-
nary mixture of nonadditive spheres. For [,>1 the parent
composition of the polydisperse particles is represented by a
Schulz distribution defined over the diameter range [0, o],
where o, is the upper cutoff diameter. The polydisperse
spheres are assumed to interact with additive collision diam-
eters, while the cross interactions between the monodisperse
and polydisperse particles are nonadditive and characterized
by a fixed nonadditivity A>0 (see Sec. II B for further de-
tails).
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FIG. 6. Reduced thermodynamic properties of mixing of the symmetric nonadditive hard-sphere binary mixture with A=0.2 (o(;=07),
o1,=1.207) as a function of composition and at different reduced pressures (P*=Pa,/kT). (a) Densities p*=po,; (b) Gibbs free energy
of mixing; (c) enthalpy of mixing; (d) entropy of mixing. In (a), the diamonds denote the simulated fluid-fluid coexistence data obtained by
Amar [2], and the thick solid line is the corresponding coexistence curve predicted with our NAHS model. The other symbols denote the
NPT Monte Carlo simulation data reported in Table I: Circles, P*=0.4; asterisks, P*=0.8; pluses, P*=1.2. The solid lines represent the
corresponding predictions of our NAHS model. The dotted lines represent the predicted mixing properties at a pressure P*=1.8 above the

critical pressure.

The effect of polydispersity on the phase behavior is
shown in Figs. 7-9. In the case of the binary system (7,
=1), the compositions of the coexistent phases are given by
the binodal curves. For polydisperse systems, the binodal
curves of the monodisperse case are replaced by two differ-
ent curves [Figs. 7(a) and 8]: The cloud and the shadow
curve. The cloud curve gives the first pressure where phase
separation occurs for a given global (or parent) composition,
and the shadow curve gives the composition of the first drop-
let of the other phase called shadow phase. The critical point
of the polydisperse mixture [represented as a circle in Figs.
7(a) and 8] is located at the intersection of the cloud and
shadow curves. As the polydisperse index I, of the parent
distribution is increased, the immiscibility region is extended
and the critical point is shifted to lower pressures. Note that
the enhancement of the fluid-fluid demixing by polydisper-
sity was also observed in colloid-polymer mixtures
[22,23,39-41].

The number average diameter of the polydisperse colloids
and the diameter distribution in the shadow phase have been
determined to examine the size fractionation caused by the
phase separation. The average diameter in the shadow phase
(o) is larger than the parent average diameter (o)’ when
the cloud phase is the component 1 rich phase [Fig. 7(b)].

This means that the largest polydisperse particles remain in
the component 1 poor phase, thus, that large spheres are
more incompatible with component 1 than small spheres.
One can see in Fig. 7(c) that the diameter distribution in the
shadow phase is very similar to the parent distribution, how-
ever the polydispersity index and the average diameter are
different: When the component 1 composition of the cloud
phase x(ld) is higher than the critical composition x,, the dis-
tribution in the shadow phase is wider (larger polydispersity
index) than the parent distribution, while it is narrower for
x(l"l)<xc. Moreover, the predicted cloud and shadow curves
depend a lot on the upper cutoff diameter o.. When the cut-
off o is increased, the cloud and shadow curves are shifted
to lower pressures. We observe that some parts of the cloud
curve do not converge when the cutoff o, tends to infinity.
Such a behavior was not observed in mixtures of polydis-
perse polymers and monodisperse colloid particles [40]: In
the case of the polydisperse polymer and monodisperse col-
loid mixture, the predicted cloud and shadow curves con-
verge for parent Schulz distributions with o.— +20, and the
results do not depend on o, as long as o, is large [40]. It was
actually shown for these mixtures that the distribution func-
tion in the shadow phase is also a Schulz distribution [40].
For the polydisperse NAHS system the cloud curves can di-
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FIG. 7. Effect of polydispersity on the phase behavior of asym-
metric NAHS mixtures. The studied polydisperse systems are mix-
tures of monodisperse spheres (component 1) of diameter o; and
polydisperse spheres with a parent number average diameter
(0)©=0.10;. The monodisperse and polydisperse spheres interact
via a fixed nonadditivity A=0.5. The size distribution is represented
by a Schulz distribution defined over [0,0.], where o.=0,. Dif-
ferent parent polydispersity indexes are considered (I,=1, 1,=1.3,
and /,=2). (a) Pressure-composition diagram. The reduced pressure
is defined as P* =Po-? 1/ kT. The dotted curves represent the binodals
of the monodisperse NAHS binary mixture with diameter ratio ¢
=0.1 and nonadditivity A=0.5. The thick and solid lines are the
predicted cloud curves and the thin lines are the corresponding
shadow curves. The circles denote the predicted critical points. (b)
Number average diameter in the shadow phase as a function of the
composition in the cloud phase. The circles denote the predicted
critical points. (c) Normalized size distribution functions in the
cloud and shadow phases predicted at x(l"")=0.6 with a parent poly-
dispersity index /,=1.3. The solid line represents the parent (cloud
phase) diameter distribution and the dashed line represents the di-
ameter distribution in the shadow phase.
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FIG. 8. Effect of the upper cutoff diameter o, on the cloud and
shadow curves of a NAHS polydisperse mixture. The studied poly-
disperse system is a mixture of monodisperse spheres (component
1) of diameter o, and polydisperse particles with a parent number
average diameter (0)¥=0;, and a parent polydispersity index I,
=1.1. The monodisperse and polydisperse spheres interact via a
fixed nonadditivity A=0.2. The size distribution is represented by a
Schulz distribution defined over [0, o.]. Different upper cutoff di-
ameters o, are used: (a) o.=30,, (b) 0.=50y, (¢c) 0.=100;. The
reduced pressure is defined as P*=Pa",/kT. The dotted curves rep-
resent the binodals of the monodisperse and symmetric NAHS bi-
nary mixture with A=0.2. The thick and solid lines are the predicted
cloud curves and the thin lines are the corresponding shadow
curves. The circles denote the predicted critical points and the
squares indicate the triple points on the cloud curves. The diamonds
denote the compositions of the shadow phases at the triple point.

verge when o.— +2. The convergence of the cloud curve is
related to the convergence of the integrals in Eq. (16), which
depends on the sign of the term a=(gfRP@/a(p )
- &fRES(ﬁ)thg)gﬁ)) inside the exponential term: The integrals
diverge if a>0. The condition for convergence also depends
on the mathematical form of the parent distribution: The
Schulz distribution contains the exponential term exp(-bo)
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FIG. 9. (a) Effect of the upper cutoff diameter o.. on the com-
position of the shadow phase. The studied polydisperse system is
the same as in Fig. 8 (o) V=0, 1,=1.1, A=0.2). (a) Number
average diameter in the shadow phase as a function of the compo-
sition in the cloud phase, obtained with different upper cutoff diam-
eters o.: Solid line, o.=30;; dashed line, o.=507;; dotted line,
0.=1007;. The circle denotes the critical point (composition x,).
For compositions less than the triple-point composition the average
diameters in the shadow phase corresponding to o.=507; and o,
=100y, are indistinguishable from the average diameters for o
=307,. The diamonds indicate the compositions of the cloud phase
at the triple point for o.=50, and 0.=100;. (b) Normalized di-
ameters distribution functions in the three coexistent phases (one
cloud and two shadow phases) at the triple-point composition (x;,
~(0.62), for the case o,=50;. The thick solid line represents the
diameter distribution in the cloud phase (parent distribution). The
thin solid line represents the diameter distribution in the shadow
phase with x(fl)zxg7 (component 1 rich shadow phase), and the
dashed-dotted line represents the diameter distribution in the other
shadow phase with x(l"l)zx; (component 1 poor shadow phase).

that converges when o— +, but this term becomes negli-
gible compared to the term exp(ac”) in Eq. (16). The diver-
gence of the integrals in Eq. (16) could be avoided by using
another parent distribution containing a convergent term
such as exp(=ba), with b>a.

The increase of o, can also lead to three-phase equilibria:
As o, is increased, a break point (denoted as a square in Fig.
8) can be clearly observed on the cloud curve in the compo-
nent 1 rich region. This point is a triple point where three-
fluid phases are in coexistence. The reader is directed to Ref.
[42] for a discussion about such triple points in polydisperse
systems. The three-phase point is also characterized by a
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discontinuity in the shadow curve, which is denoted by two
diamonds in Fig. 8(b). This discontinuity shows that the
same cloud phase coexist with two types of shadow phases at
the triple point. We observed that the branches of the cloud
and shadow curves that correspond to cloud phase composi-
tions x; below the triple-point composition x,, do not depend
on the cutoff diameter o,, while the other branches corre-
sponding to x; > x,, dramatically depend on o, (Fig. 8). As
o, is increased, the critical composition x, does not signifi-
cantly change, while the triple-point composition x,, is
shifted to lower compositions x; [Fig. 8(b)], until the critical
point becomes metastable (x,,<x.) for very large cutoffs
[Fig. 8(c)].

The average diameter ()" in the shadow phase as a
function of the cloud phase composition x(,Cl) is depicted in
Fig. 9(a) for the polydisperse symmetric mixture with A
=0.2. For a short cutoff diameter (¢.=307,) no triple point is
observed and the curve (o) vs x(l"?) is continuous. For large
cutoffs (o,.=5, 0,.=10) a triple point appears, and the curve
()M ys xg"l) is discontinuous as the cloud curve can coexist
with two types of shadow curves. The diamonds in Fig. 9(a)
denote the triple-point composition of the cloud curve and
the corresponding average diameter (o)) in the shadow
phase for o.=5 and o,=10. Using Eq. (15), we have deter-
mined the diameter distribution functions of the coexistent
phases at the triple point for the same polydisperse mixture
with o.=5. For this system the cloud phase composition at
the triple point is around x,,~0.62. The parent Schulz distri-
bution and the distributions of both shadow phases at x(fl)
=x,, are depicted in Fig. 9(b). One can observe that all dis-
tributions are similar in shape for small values of o, but the
distribution in the shadow phase corresponding to the branch
xﬁd) > x,, [represented as a dashed line in Fig. 9(b)] exhibits a
second peak near o=o,. This second peak can be mathemati-
cally explained by the divergence of the exponential term
exp(---+ac”) in Eq. (15) when o— +.

It is interesting to compare our results with those obtained
by Wilding et al. [43,44] for polydisperse spherical particles
interacting via Lennard-Jones (LJ) potentials, along the
vapor-liquid equilibria curve. Wilding et al. [44] found that
the diameter distribution in liquid shadow phases in coexist-
ence with vapor cloud phases exhibited a second peak near
o., which is very similar to the peak that we find for the
NAHS system. To make an analogy between the NAHS mix-
ture and the LJ systems studied by Wilding er al. [44], let us
consider that the NAHS mixture of component 1 and poly-
disperse particles can be matched to an effective polydis-
perse mixture of the same polydisperse particles without
component 1, interacting via effective depletion potentials
[45]. These effective depletion potentials would take into ac-
count the nonadditivity between component 1 and the poly-
disperse spheres, and contain an attractive part, as the pres-
ence of component 1 induces an effective attraction between
the polydisperse particles. We can then relate the LJ and
NAHS systems by relating the vapor cloud phases of the LJ
system to the cloud phases poor in polydisperse particles in
the NAHS system, and the liquid shadow phases of the LJ
system to the shadow phases rich in polydisperse particles.
According to Wilding et al. [44], the appearance of a second
peak near o, in the shadow phase distribution is due to the

021202-10



PHASE EQUILIBRIA IN POLYDISPERSE NONADDITIVE ...

fact that the attractive interactions between the largest LJ
spheres are more important, and that the enhancement of
their concentration in the shadow phase results from a large
free energy gain. In the case of the NAHS mixture, the ef-
fective depletion potentials between the large particles are
more attractive, since the largest polydisperse particles are
the most incompatible with component 1. Thus, our results
are consistent with the findings of Wilding et al. [44].

V. CONCLUSION

We propose an analytical equation of state for nonadditive
hard-sphere mixtures, which is based on a perturbation from
the additive mixture and on a modification of the MIXI
theory. For fluid phases and positive nonadditivities the
model is as accurate as the currently available equations of
state, and its simple mathematical form makes possible the
treatment of continuous polydisperse systems. It is shown
from Monte Carlo simulations and theoretical predictions
that the enthalpy of mixing is largely positive and overcomes
the positive entropy of mixing at high pressures, leading to a
fluid-fluid phase separation that ends at a lower critical solu-
tion pressure. The density moment formalism is employed to
determine the cloud and shadow curves of a number of poly-
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disperse NAHS systems. The studied polydisperse systems
are mixtures of monodisperse and polydisperse spheres,
which interact with a fixed nonadditivity. The cloud and
shadow curves depend a lot on the upper cutoff o. of the
parent diameter distribution, and three-phase equilibria can
be observed for larges values of .. Some similarities are
found between the polydisperse NAHS mixtures and the
polydisperse LJ systems studied by Wilding et al. [43,44]; in
particular, the cloud and shadow curves depend a lot on the
upper cutoff diameter of the Schulz distribution, and two
different peaks can appear in the diameter distribution of the
shadow phase.

The current NAHS model cannot only be used to predict
the phase behavior of colloid systems, but can also be imple-
mented into engineering equations of state based on pertur-
bation theory to treat real systems such as mixtures of rare
gases. The use of the NAHS mixture as the reference system
then enables the introduction of an adjustable cross interac-
tion parameter that characterizes the nonadditivity of the re-
pulsive cores.
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